COMPLEX BERWALD MANIFOLDS WITH VANISHING HOLOMORPHIC SECTIONAL CURVATURE – CORRIGENDUM

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

strictly kähler-berwald manifolds with constant‎ ‎holomorphic sectional curvature

in this paper‎, ‎the‎ ‎authors prove that a strictly kähler-berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ kähler manifold‎.

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Corrigendum to: Holomorphic Morse inequalities on manifolds with boundary

— A statement in the paper “Holomorphic Morse inequalities on manifolds with boundary” saying that the holomorphic Morse inequalities for an hermitian line bundle L over X are sharp as long as L extends as semi-positive bundle over a Stein-filling is corrected, by adding certain assumptions. A more general situation is also treated. Résumé. — Nous corrigeons l’énoncé qui affirme que les inégali...

متن کامل

On Compact Kaehlerian Manifolds with Positive Holomorphic Curvature

1. Statement of the results. 1.1. Let M be a compact Kaehlerian manifold. The underlying Riemannian manifold which we also denote by M is orientable and of even dimension. Let K = K(<r) be the Riemannian curvature of M, considered as a Riemannian manifold. K(a) is a function on the 2planes a tangent to M. The restriction of K to holomorphic 2-planes is called holomorphic curvature and will be d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2009

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s001708950999036x